Resumen
Four molecules that have been proven to act as corrosion inhibitors of mild steel in acidic media are studied. The inhibitive efficiency of these molecules is explained by means of electronic structure calculations of the protonated species that seem to represent better the actual situation of the experimental conditions. By assuming that the interaction between the inhibitor and the metallic surface occurs through donation and back-donation, it is shown, with a simple charge transfer model, that the interaction energy is favored when hardness increases, in agreement with the experimentally observed inhibition efficiencies. A local analysis with Hirshfeld condensed Fukui functions, and local Fukui functions, provides further support to the donation and back-donation mechanism.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 8928-8934 |
Número de páginas | 7 |
Publicación | Journal of Physical Chemistry B |
Volumen | 110 |
N.º | 18 |
DOI | |
Estado | Publicada - 11 may. 2006 |
Publicado de forma externa | Sí |