Orthographic Comparison Revealed by Ambient Sentiment Classification

B. Arunadevi, D. Saravanan, Klinge Villallba-Condori, Kriti Srivastava, M. Kalyan Chakravarthi, Regin Rajan

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

Several deep neural network versions have been successfully used to create parametric models that project variable-duration spoken word segments onto fixed-size vector representations, also known as acoustic word embeddings (AWEs). However; it is uncertain to what extent the distance in the growing AWE space can evaluate word-form similarity. This study investigates whether acoustic embedding space distance is related to phonological dissimilarity. The performance of supervised techniques for AWEs with different neural architectures and learning aims to solve this question. AWE models are trained in controlled settings for two languages (German and Czech) and evaluate the embeddings on two tasks: word discrimination and phonological similarity. The findings reveal that (1) the embedding space distance weakly corresponds with phonological distance in the best circumstances, and (2) enhancing word discrimination performance does not always result in models that better reflect word phonological similarity. The results emphasize the need to reconsider existing intrinsic AWE evaluations.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 5th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2021
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas834-838
Número de páginas5
ISBN (versión digital)9781665435246
DOI
EstadoPublicada - 2021
Evento5th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2021 - Coimbatore, India
Duración: 2 dic. 20214 dic. 2021

Serie de la publicación

NombreProceedings of the 5th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2021

Conferencia

Conferencia5th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2021
País/TerritorioIndia
CiudadCoimbatore
Período2/12/214/12/21

Huella

Profundice en los temas de investigación de 'Orthographic Comparison Revealed by Ambient Sentiment Classification'. En conjunto forman una huella única.

Citar esto