TY - JOUR
T1 - Maximum expiratory flow of children and adolescents living at moderate altitudes
T2 - Proposed reference values
AU - Cossio-Bolaños, Marco
AU - Vidal-Espinoza, Rubén
AU - Castelli Correia de Campos, Luis Felipe
AU - Urzua-Alul, Luis
AU - Fuentes-López, José Damián
AU - Sulla-Torres, Jose
AU - Andruske, Cynthia Lee
AU - Gomez-Campos, Rossana
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/3
Y1 - 2021/3
N2 - (1) Background: Spirometry is useful for diagnosing and monitoring many respiratory diseases. The objectives were: (a) compare maximum expiratory flow (MEF) values with those from international studies, (b) determine if MEF should be evaluated by chronological age and/or maturity, (c) develop reference norms for children, and adolescents. (2) Methods: A cross-sectional study was designed with 3900 subjects ages 6.0 and 17.9 years old. Weight, standing height, sitting height, and MEF were measured. Length of the lower limbs, body mass index (BMI), and age of peak height velocity growth (APHV) were calculated. (3) Results: Values for the curves (p50) for females of all ages from Spain and Italy were higher (92 to 382 (L/min)) than those for females from Arequipa (Peru). Curve values for males from Spain and Italy were greater [70 to 125 (L/min)] than the males studied. MEF values were similar to those of Chilean students ages 6 to 11. However, from 12 to 17 years old, values were lower in males (25 to 55 (L/min)) and in females (23.5 to 90 (L/min)). Correlations between chronological age and MEF in males were from (r = 0.68, R2 = 0.39) and in females from (r = 0.46, R2 = 0.21). Correlations between maturity (APHV) and MEF for males were from (r = 0.66, R2 = 0.44) and for females (r = 0.51, R2 = 0.26). Percentiles were calculated for chronological age and APHV. Conclusion: Differences occurred in MEF when compared with other geographical regions of the world. We determined that maturity may be a more effective indicator for analyzing MEF. Reference values were generated using chronological age and maturity.
AB - (1) Background: Spirometry is useful for diagnosing and monitoring many respiratory diseases. The objectives were: (a) compare maximum expiratory flow (MEF) values with those from international studies, (b) determine if MEF should be evaluated by chronological age and/or maturity, (c) develop reference norms for children, and adolescents. (2) Methods: A cross-sectional study was designed with 3900 subjects ages 6.0 and 17.9 years old. Weight, standing height, sitting height, and MEF were measured. Length of the lower limbs, body mass index (BMI), and age of peak height velocity growth (APHV) were calculated. (3) Results: Values for the curves (p50) for females of all ages from Spain and Italy were higher (92 to 382 (L/min)) than those for females from Arequipa (Peru). Curve values for males from Spain and Italy were greater [70 to 125 (L/min)] than the males studied. MEF values were similar to those of Chilean students ages 6 to 11. However, from 12 to 17 years old, values were lower in males (25 to 55 (L/min)) and in females (23.5 to 90 (L/min)). Correlations between chronological age and MEF in males were from (r = 0.68, R2 = 0.39) and in females from (r = 0.46, R2 = 0.21). Correlations between maturity (APHV) and MEF for males were from (r = 0.66, R2 = 0.44) and for females (r = 0.51, R2 = 0.26). Percentiles were calculated for chronological age and APHV. Conclusion: Differences occurred in MEF when compared with other geographical regions of the world. We determined that maturity may be a more effective indicator for analyzing MEF. Reference values were generated using chronological age and maturity.
KW - Adolescents
KW - Altitude
KW - Children
KW - Maximum expiratory flow
KW - Percentiles
UR - http://www.scopus.com/inward/record.url?scp=85104412774&partnerID=8YFLogxK
U2 - 10.3390/healthcare9030264
DO - 10.3390/healthcare9030264
M3 - Article
AN - SCOPUS:85104412774
SN - 2227-9032
VL - 9
JO - Healthcare (Switzerland)
JF - Healthcare (Switzerland)
IS - 3
M1 - 264
ER -