Clasificación de la densidad mineral ósea utilizando técnicas de aprendizaje automático en niños y adolescentes según edad y sexo

José Sulla-Torres, Alan Bedoya-Carrillo, Rossana Gomez-Campos, Marco Cossio-Bolaños

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Bone health is a field that has become very important in recent years, especially in diseases related to bones, since they are becoming more common among humans. Osteoporosis currently causes an estimated 8.9 million fractures annually. Bone mineral density (BMD) and bone mineral content (BMC) are indicators that can diagnose the problem of bone health. The objective of this study is to classify BMD in children and adolescents using automatic learning techniques. A descriptive cross-sectional study was developed. We studied 660 schoolchildren from two educational centers with an age range of 6 to 18 years from the province of Arequipa (Peru). Anthropometric variables were evaluated. The BMD and CMO were determined. The Body Mass Index (BMI) was calculated, and a comparative study was made of 9 machine learning algorithms related to the subject. These include decision trees, bayesian networks, decision and regression tables. Random Forest's classification algorithm is 94.87%. This algorithm allowed to implement a software. This tool allows to calculate the bone health of schoolchildren between 6 to 18 years. The algorithm obtained can be implemented from a prediction software that allows the classification and prevention of the deterioration of the bone health of children and adolescents.

Título traducido de la contribuciónClassification of bone mineral density using automatic learning techniques in children and adolescents according to age and sex
Idioma originalEspañol
Título de la publicación alojada17th LACCEI International Multi-Conference for Engineering, Education, and Technology
Subtítulo de la publicación alojada"Industry, Innovation, and Infrastructure for Sustainable Cities and Communities", LACCEI 2019
EditorialLatin American and Caribbean Consortium of Engineering Institutions
ISBN (versión digital)9780999344361
EstadoPublicada - 2019
Evento17th LACCEI International Multi-Conference for Engineering, Education, and Technology, LACCEI 2019 - Montego Bay, Jamaica
Duración: 24 jul. 201926 jul. 2019

Serie de la publicación

NombreProceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
Volumen2019-July
ISSN (versión digital)2414-6390

Conferencia

Conferencia17th LACCEI International Multi-Conference for Engineering, Education, and Technology, LACCEI 2019
País/TerritorioJamaica
CiudadMontego Bay
Período24/07/1926/07/19

Palabras clave

  • Bone mineral density
  • Children and adolescents
  • Classification
  • Decision tree
  • Machine learning

Huella

Profundice en los temas de investigación de 'Clasificación de la densidad mineral ósea utilizando técnicas de aprendizaje automático en niños y adolescentes según edad y sexo'. En conjunto forman una huella única.

Citar esto