Automatic video summarization using the optimum-path forest unsupervised classifier

César Castelo-Fernández, Guillermo Calderón-Ruiz

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

In this paper a novel method for video summarization is presented, which uses a color-based feature extraction technique and a graph-based clustering technique. One major advantage of this method is that it is parameter-free, that is, we do not need to define neither the number of shots or a consecutive-frames dissimilarity threshold. The results have shown that the method is both effective and efficient in processing videos containing several thousands of frames, obtaining very meaningful summaries in a quick way.

Idioma originalInglés
Título de la publicación alojadaLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditoresAlvaro Pardo, Josef Kittler
EditorialSpringer Verlag
Páginas760-767
Número de páginas8
ISBN (versión impresa)9783319257501
DOI
EstadoPublicada - 2015
Evento20th Iberoamerican Congress on on Pattern Recognition, CIARP 2015 - Montevideo, Uruguay
Duración: 9 nov. 201512 nov. 2015

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen9423
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia20th Iberoamerican Congress on on Pattern Recognition, CIARP 2015
País/TerritorioUruguay
CiudadMontevideo
Período9/11/1512/11/15

Huella

Profundice en los temas de investigación de 'Automatic video summarization using the optimum-path forest unsupervised classifier'. En conjunto forman una huella única.

Citar esto