A Systematic Literature Review of Modalities, Trends, and Limitations in Emotion Recognition, Affective Computing, and Sentiment Analysis

Rosa A. García-Hernández, Huizilopoztli Luna-García, José M. Celaya-Padilla, Alejandra García-Hernández, Luis C. Reveles-Gómez, Luis Alberto Flores-Chaires, J. Ruben Delgado-Contreras, David Rondon, Klinge O. Villalba-Condori

Producción científica: Contribución a una revistaArtículo de revisiónrevisión exhaustiva

Resumen

This systematic literature review delves into the extensive landscape of emotion recognition, sentiment analysis, and affective computing, analyzing 609 articles. Exploring the intricate relationships among these research domains, and leveraging data from four well-established sources—IEEE, Science Direct, Springer, and MDPI—this systematic review classifies studies in four modalities based on the types of data analyzed. These modalities are unimodal, multi-physical, multi-physiological, and multi-physical–physiological. After the classification, key insights about applications, learning models, and data sources are extracted and analyzed. This review highlights the exponential growth in studies utilizing EEG signals for emotion recognition, and the potential of multimodal approaches combining physical and physiological signals to enhance the accuracy and practicality of emotion recognition systems. This comprehensive overview of research advances, emerging trends, and limitations from 2018 to 2023 underscores the importance of continued exploration and interdisciplinary collaboration in these rapidly evolving fields.

Idioma originalInglés
Número de artículo7165
PublicaciónApplied Sciences (Switzerland)
Volumen14
N.º16
DOI
EstadoPublicada - ago. 2024

Huella

Profundice en los temas de investigación de 'A Systematic Literature Review of Modalities, Trends, and Limitations in Emotion Recognition, Affective Computing, and Sentiment Analysis'. En conjunto forman una huella única.

Citar esto